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We deal here with a transient problem which occurs in filtration theory, 

namely the spreading of a so-called lens in which there is fresh under- 
ground water, whilst the lens is located on the surface of underground 

soil waters of higher density (Fig. 1). 

Solutions are derived for the Diane and the axial-symmetrical problem; 

the following assumptions are introduced; the filtration coefficient k is 

the same for both regions; the density of the fresh water is p,,; the 

density of the salt water is pl and pu < pl. 

We are going to assume that in the plane parallel problem the filtra- 
tion velocity in the lens in the direction of the I: axis is considerably 

greater than that in the y axis direction, i.e. ~~(0) >> v,,(O); in the 
case of axial symmetry v,(O) >> ~~(0). 

Additionally the filtration velocities in the underlying strata 
occupied by the higher density subterranean water, on the surface of 

which the lens is situated, are considerably less than those within the 
lens. We therefore have: 

For the plane problem 

v,(O) > v.#(l), up >> vp 

For the axial-symmetric problem 

vp > up, v,w > v,(l) 

It can be concluded from the foregoing that the velocity Potential 

within the lens, 4, will be a function of x (or r) only, whilst the 
velocity potential in the underlying region occupied by the subterranean 

water is zero. 

In this case, with 41 = 0 the velocities vanish, i.e. 
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Lenticular spreading of underground waters 
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With these assumptions the change in level of the underlying waters 
in the lower-layer due to the lens formation above, and its influence on 
the spreading is not taken into account. Besides it is assumed that 
underlying water of one density completely displaces underlying water of 
another density. 

It follows from the above assumptions 
that in region I, at the outside bound- 

ary where it impinges on the outside 
medium (at point C) 

P = 0, Y = h (z) (1) 

Therefore, in view of the fact that 

(2) Fig. 1, 

we have 

‘pa = - kh (r) (3) 

Let us determine the conditions at the boundary between regions I and 
II. In region II the potential 4 = 0; besides, we assume that the equa- 

tion of the line which divides region I from II is of the form 

y = - ah (2) (4) 

Then the conditions on the boundary between regions I and II are 

‘p = - kh (z), Y= - ah (5) (5) 

The pressure at a point D on this boundary will be determined from the 

condition that 41 = 0. From an expression similar to (21, assuming 

4 = 0. we find 

--k {s + [-- ah (41) = 0, or P = Pl@h(2) (6) 

Because the pressure changes smoothly when going across the line ADB, 

in view of (2). we will have at point D 

-kWz)=-k[v-ah(r)] or (E -+-_l 

Therefore the condition for the boundary between regions I and II will 

be fulfilled if 

Q=Po 
Pi - PO 
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During the spreading therefore the ratio of the length ED to EC remains con- 
stant. 

Thus the liquid which was above the z axis at the start always moves above 
this axis. The assumption that 4 = -k(h)%, leads us to the fact that uz =d@dz= 
-kit’(x). In this case velocity ux is independent of y. i.e. it is constant along 
a vertical segment. 

Suppose, at the initial instant the lens has the shape shown on Fig. 1. The 
equations of lines ACE and AD3 will be respectively 

Y = h @% y=-ah(x) 

The total quantity of water enclosed by the lens will be (a~ is the Porosity 
of the medium): 

(9) 

To study the motion of the lens it is sufficient to observe spreading of a 
given region occupied by underlying waters over an impermeable bottom surface. 

This region (Fig. 2) will correspond to the portion of the underlying waters 
which is above the abscissa. We will assume that when 

Fig. 2. 

We will give the solution to 
for the case where the quantity 
one dimensional case. The first 
ables is as follows: 

t=O h (4 = h0 (3 (- a0 < X < aof 

It is known that function h(z, t) satisfies 
the Boussinesq equation [ 1 1. For the one 
dimensional and axial-symmetric cases we have, 
respectively 

(10) 
ah k a‘Jh2 ah k 9 
z=2qa@-1 -- at - 2X ( Bri + %)h* 

the problem of spreading of underground waters 
of fluid remains constant. Let us consider the 
of the equations (10) in non-dime~ional vari- 

u 692) = uo (El for 7=0 

Here function II,(() is given over intersect - 1 < 5 < 1; outside this inter- 
sect it is zero. One can form the conclusion, evidently, that the required solu- 
tion will tend to the solution which will prevail for impulsive starting condi- 
tions. This problem was dealt with by Barenblatt I2 3. In this article these 
results are obtained by a different method in which several inaccuracies appear- 
ing in [ 2 1 are corrected. 
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We will look for a function u(e) for which we have initial values 

uo (5) = 1 - 52 for T=O (-l<E<l) (12) 

During motion we have 

u = P (9 [u2 (7) -PI (13) 

As the quantity of liquid within the lens remains constant, from the above 

we have 

2 5 (1 - E2) dt = 2 
a(s) 

\ p (7) [as (7) - Ea] dE = $ p (5) as (T) 

0 0 

Because the integral in question must remain constant we have 

5(~)cs(7)=1, or P(r) = &) (14) 

In accordance with (13) we have 

u (ED9 = &) Iaf (7) - ET = a+) - aG (15) 

Inserting the expression obtained into the initial equation (11) we find 

au --- at TrSs= [4-a2 (~)a’(~)1 [&)-a+)E2] =0 

From this we have 
1 

4-a2(T)a’(t)=0, or a (7) = (C + 127)’ 

Because a(r ) = 1 when T = 0 we have 

1 

(I (t) - (1 -+- 12T)b 

(From (15) we have 

On introducing 

part of the lens 

2 

1 
u (69 7) = 1 + 12r (I+ 129 -T - p] (16) 

the foregoing variables for the curve which bounds the upper 

h (2, f) = 
ho 

1 + ((i/rho / rn~,~) t [(i+$g- (i-1 (17) 

The equation of the curve which bounds the lower part of the lens, because 

of (4). is 

. h, (2.1) = - -@_- h (z t) 
p1-PO ’ 
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The coordinate of the extreme point of the lens, located on the abscissa is 

a(t) = a, ( 1 + 2 t 
,+ 

02 / (19) 

Now let us consider the axially symmetrical 
case (Fig. 3). The fundamental differential 
equation in polar coordinates will be (10) r 

altl 

(20) 

With r = 0 we have the initial condition 

ue= 1-q * for the interval - 1 < 7 < + 1. 

Let us assume that 

@kir. 3 

u (q, -0 = P IT) [a2 (7) -VI 

Maintenance of constant volume of liquid leads us to equations 

1 

5 (i - V) 27cr d? = P (7) 

a(s) 

1 [a2 (7) ? - ri31 2~71 drl, p(T) a4 (r) =I 

0 0 

from which p(r ) = a4(r ); whence 
1 v 

u (q, T) = - - - 
a”(T) a2 W 

Inserting this expression into Equation (20) we obtain 

ihi 
-- 

a= (&+$&)G=[-4a3(~)+16] &-a& =0 
1 

The equation will be satisfied if 

- a3 (7) a’ (T) + 14 = 0, a4 (7) = 167 + C 

(21) 

Bearing in mind the initial condition a(r) = 1, for 7 = 0 we get 

1 

a (T) = (1 + 167): 

Therefore 1 
1 

~((7. ?I= 1+167 
T 

(1 + 16~) 

We now transform back to the previous variables and find an equation for the 

surface which bounds the upper part of the lens 

h (t, r) = 
ho 

1 + (8kho / maoz) 1 [( 'I" ggtf-it)‘] (23) 
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The equation of the surface which bounds the lower part of the 
fOl?li 

lens is of the 

h(t, r) (24) 1 

The coordinate of an extreme point of 
the lens will be 

Fig. 4. 
To confirm these results experiments 

were done with a slotted vessel (1=1230mm, 
b= 1.5 mm, a = 100 mm). 

The denser liquid (~1 = 1.225) was simulated in the first experiment by a 
mixture of glycerine and brine, 75 ml glycerine to 25 ml aqueous salt solution, 
the latter obtained by dissolving 30 gm cooking salt in 100 m3 of fresh water. 

In the second experiment the denser 
liquid (pI = 1.27) was simulated by 
salted glycerine, 100 ml glycerine to 
log cooking salt. 

The less dense liquid in the first 
experiment (pe = 1.18) was simulated by 
a tinted aqueous solution of glycerine, 
25 ml fresh water to 75 m3 glycerine. In 
the second experiment the less dense 
liquid @e = 1.23) was simulated by 
tinted glycerine. 

About 100 ml of the denser liquid was 
poured into the “slotted vessel”. After 
its surface had levelled out, between 2 
and 6 ml of the less dense liquid was 
poured on. 

Results were worked out for two ex- 
periments and the law of displacement of 
the edge of the lens was established. 

Figure 4 shows results worked out from 
formula (19); the upper curve corresponds Fig. 5. 

to values p&l = 0.964, the lower one 
PO/p1 - 0.969; experimental points are 
indicated. The agreement in both cases allows us to conclude that the initial 
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assumptions, which form the basis of the solution, are confirmed. 

Figure 5 shows photographs of three successive lens shapes which confirm the 

results of calculation qualitatively. 
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